Sampling and Reconstruction of Functions in Shift-invariant Spaces

Anuj Kumar

Department of Mathematics Indian Institute of Technology Delhi New Delhi 110016, India E-mail: ak.maths.iitd@gmail.com

Abstract

Modern digital signal processing always uses discrete samples which are obtained by sampling f on a discrete set X. Thus it is natural to ask whether and how f can be recovered from its samples. Let V be a given class of signals on \mathbb{R} . We are interested to find the conditions on the sampling set $X = \{x_k : k \in \mathbb{Z}\}$ such that every $f \in V$ can be reconstructed uniquely and stably from its samples $\{f(x_k) : x_k \in X\}$, i.e., there are constants $0 < A \le B < \infty$ such that

$$A||f||_{L^{2}(\mathbb{R})} \le \left(\sum_{k \in \mathbb{Z}} |f(x_{k})|^{2}\right)^{1/2} \le B||f||_{L^{2}(\mathbb{R})}, \ \forall f \in V.$$

In practice, the measurement apparatus gives only local averages of f near certain points. Precisely, measured sample values are as follows

$$\langle f, u_k \rangle = \int_{\mathbb{R}} f(x) u_k(x) dx,$$

where $\{u_k : k \in \mathbb{Z}\}$ is a sequence of averaging functions satisfying the following conditions:

(i) supp
$$u_k \subset \left[x_k - \frac{\delta}{2}, x_k + \frac{\delta}{2}\right], \quad u_k \ge 0 \text{ and (ii) } \int_{\mathbb{R}} u_k(x) dx = 1.$$

The aim of this talk is to discuss about average sampling and reconstruction in shift-invariant spaces [2] $V(\varphi)$ defined by

$$V(\varphi) := \left\{ f(x) = \sum_{k \in \mathbb{Z}} c_k \varphi(x - k) : c = (c_k) \in \ell^2(\mathbb{Z}) \right\}$$

where $\varphi \in L^2(\mathbb{R})$ satisfies

$$E\|c\|_{\ell^2(\mathbb{Z})} \le \left\| \sum_{k \in \mathbb{Z}} c_k \varphi(\cdot - k) \right\|_{L^2(\mathbb{R})} \le F\|c\|_{\ell^2(\mathbb{Z})} \qquad \forall \ c = (c_k) \in \ell^2(\mathbb{Z})$$

for some E, F > 0. These spaces play an important role in multi resolution analysis, sampling theory and several other research areas of signal and image processing [1, 2]. It is well-known [4] that if φ has moderate decay in time domain, then $V(\varphi)$ is a reproducing kernel Hilbert space. Thus, the point-wise evaluation is continuous on $V(\varphi)$. We discuss the reconstruction of signals in $V(\varphi)$ from local average samples. Consider a class $\mathcal F$ of continuously differentiable functions φ defined on $\mathbb R$ satisfying the following conditions:

(a) There exist constants $C_1, C_2 > 0$ and $\alpha > 0.5$ such that $|\varphi(x)| \leq \frac{C_1}{|x|^{\alpha}}$ and $|\varphi'(x)| \leq \frac{C_2}{|x|^{\alpha}}$ for sufficiently large x,

22 Anuj Kumar

- (b) $\underset{\omega \in [0,1]}{\operatorname{ess}} \sup_{k \in \mathbb{Z}} (\omega + k)^2 |\widehat{\varphi}(\omega + k)|^2 < \infty$,
- (c) $\{\varphi(\cdot k) : k \in \mathbb{Z}\}$ forms a Riesz basis for $V(\varphi)$.

Let $B = \operatorname{ess\,sup}_{\omega \in [0,1]} B(\omega)$, where

$$B(w) := \frac{\sum\limits_{k \in \mathbb{Z}} (\omega + k)^2 |\widehat{\varphi}(\omega + k)|^2}{\sum\limits_{k \in \mathbb{Z}} |\widehat{\varphi}(\omega + k)|^2}.$$

We prove that if $\varphi \in \mathcal{F}$ and a sampling set $X = \{x_k : k \in \mathbb{Z}\}$ such that $\cdots < x_k < x_{k+1} < \cdots$ and $\sup_{k \in \mathbb{Z}} (x_{k+1} - x_k) = \beta < \frac{1}{2\sqrt{B}}$, then every $f \in V(\varphi)$ can be reconstructed uniquely and stably from its local averages near x_k provided the support length of averaging functions δ is less than $\frac{1}{2\sqrt{B}} - \beta$.

For the definition of frames and Riesz basis, we refer [3]. Define $\widetilde{\varphi}$ by

$$\widehat{\widetilde{\varphi}}(\omega) := \frac{\widehat{\varphi}(\omega)}{\sum\limits_{k \in \mathbb{Z}} |\widehat{\varphi}(w+k)|^2},$$

then it is well-known that $\{\widetilde{\varphi}(\cdot - k) : k \in \mathbb{Z}\}$ is a dual Riesz basis for $V(\varphi)$. For each $k \in \mathbb{Z}$, define $g_k = \sum_{m \in \mathbb{Z}} \langle u_k, \widetilde{\varphi}(\cdot - m) \rangle \varphi(\cdot - m)$, then $\langle f, g_k \rangle = \langle f, u_k \rangle$ holds for any $f \in V(\varphi)$. Moreover, $\left\{ \left(\frac{x_{k+1} - x_{k-1}}{2} \right)^{1/2} g_k : k \in \mathbb{Z} \right\}$ is a frame for $V(\varphi)$ with frame bounds $M = \frac{2}{81} \left(1 - 2(\beta + \delta) \sqrt{B} \right)^3$ and $N = \left(1 + \pi \sqrt{2B} (\delta + \beta) \right)^2$. Thus, every $f \in V(\varphi)$ can be reconstructed from its local averages by applying the following iterative frame reconstruction algorithm

$$Sf := \frac{2}{M+N} \sum_{k \in \mathbb{Z}} \left(\frac{x_{k+1} - x_{k-1}}{2} \right) \langle f, u_k \rangle g_k,$$

$$f_0 = Sf,$$

$$f_{n+1} = f_n + S(f - f_n), \quad n \ge 0.$$

The error estimate after n^{th} iteration is given by

$$||f - f_n||_{L^2(\mathbb{R})} \le \left(\frac{N - M}{N + M}\right)^{n+1} ||f||_{L^2(\mathbb{R})}.$$

The detailed proof of the above results can be found in [5]. We also illustrate the theoretical results numerically by considering φ as B-spline function and Meyer scaling function. This is a joint work with Dr. Sivananthan Sampath.

References

- [1] A. Aldroubi. Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces. *Appl. Comput. Harmon. Anal.*, 13(2):151–161, 2002.
- [2] A. Aldroubi and K. Gröchenig. Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Review, 43(4):585–620, 2001.
- [3] O. Christensen. An introduction to frames and Riesz bases, volume 7. Boston(MA):Birkhäuser, 2003.
- [4] S.H. Kulkarni, R. Radha, and S. Sivananthan. Non-uniform sampling problem. *J. Appl. Funct. Anal.*, 4(1):58–74, 2009.
- [5] A. Kumar and S. Sampath. Average sampling and reconstruction in shift-invariant spaces and variable bandwidth spaces. *Appl. Anal.*, *DOI:* 10.1080/00036811.2018.1508652, 2018.